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The performance of ground-based surveillance radars strongly
depends on the distribution and spectral characteristics of ground
clutter. To design signal processing algorithms that exploit the
knowledge of clutter characteristics, a preliminary statistical
analysis of ground-clutter data is necessary. We report the
results of a statistical analysis of X-band ground-clutter data
from the MIT Lincoln Laboratory Phase One program. Data
non-Gaussianity of the in-phase and quadrature components
was revealed, first by means of histogram and moments
analysis, and then by means of a Gaussianity test based on
cumulants of order higher than the second; to this purpose
parametric autoregressive (AR) modeling of the clutter process
was developed. The test is computationally attractive and has
constant false alarm rate (CFAR). Incoherent analysis has also
been carried out by checking the fitting to Rayleigh, Weibull,
log-normal, and K-distribution models. Finally, a new modified
Kolmogorov-Smirnoff (KS) goodness-of-fit test is proposed; this
modified test guarantees good fitting in the distribution tails,
which is of fundamental importance for a correct design of CFAR

processors.
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I.  INTRODUCTION

For many years, in radars with low resolution
capabilities, the clutter echoes were considered
as having a Gaussian probability density function
(pdf); see for example [16, sect. 10.2]. In modern
radar systems, operating at low grazing angles
or with resolution capabilities high enough to
resolve the structure of sea or ground surfaces,
the statistics of the clutter have been observed to
deviate from Gaussianity [1, 2, 7, 8, 12, 19, 20].
The clutter is spikier than if it were Gaussian, and
the spikes are processed by the radar detector as
targets, with increased false-alarm rate (FAR). The
understanding of clutter behavior and the modeling
of the non-Gaussian clutter, both in the spectrum
and in the distribution, are problems of fundamental
interest in the radar community for successful radar
design and performance prediction. The spectral
characteristics of clutter determine, for instance, the
design of moving-target-indicator (MTI) processors
[5, 10], and the amplitude statistics of clutter affect
the design of constant false-alarm rate (CFAR)
processors (see e.g., [16, p. 306; 27)).

In particular, the amplitude statistics resulting from
the cell-to-cell spatial variation of clutter (the main
subject of this paper) are highly important in clutter
modeling for determining signal-to-clutter power
ratios at inputs to clutter cancellation processors, so
as to determine whether or not detection and tracking
can occur in the clutter residues left after clutter
cancellation.

This paper reports statistical analyses performed
on experimental X-band ground-clutter data in open
agricultural terrain. The data were recorded at the
Wolseley, Saskatchewan, site with the MIT Lincoln
Laboratory Phase One radar.

Our main aim is to test the theoretical models
so far proposed in the literature, and to verify
the deviations of the recorded X-band data from
Gaussianity.

In the rest of this section, the experimental set-up
is briefly described. The next section reports the
analysis of the in-phase (I) and quadrature (Q)
components in terms of histograms, and third- and
fourth-order zero-lag cumulants (called, respectively,
skewness and kurtosis). Azimuth and range spectral
analysis is the topic of Section III. In parallel to
classical nonparametric FFT-based (fast Fourier
transform) estimation, parametric estimation based
on autoregressive (AR) modeling is also carried out
because it is needed for the novel Gaussianity test
employed in Section IV. This test, which is based on
cumulants of order higher than the second, applies
to stochastic processes irrespective of the temporal
or spatial nature of the data; it was proposed and
applied to seismic data by Giannakis and Tsatsanis
in [14]. We have applied it for the first time to radar
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clutter data in order to test for the Gaussianity of the [
and Q samples. The results of this test are in perfect
agreement with those presented in Section IL. In
Section V, the statistical analysis of the ground clutter
is completed with the incoherent analysis of the data
amplitude. Incoherent analysis has also been carried
out by checking the fitting to Rayleigh, Weibull,
log-normal, and K -distribution models. In particular,
a modified version of the Kolmogorov—~Smirnoff
(KS) test is proposed that overcomes the limitation
of classical KS and chi-squared tests when applied

to radar clutter data. As already noted in [3 and 7],
the classical KS test is not able to distinguish among
the Rayleigh, Weibull, log-normal and K -distribution
models when we are interested in obtaining a good
fit to the distribution tails for correct design of

CFAR processors. Some conclusions are reported in
Section VL

A. Measurement Instrumentation

The Phase One radar could operate in any one
of five different radar bands (VHF, UHF, L-, S-, and
X-bands). The results of this work are for ground
clutter data recorded at X-band. Results in all bands
are given in [2—4]. The overall radar system block
diagram is shown in Fig. 1(a). The system exciter
supplied all transmit and receive local oscillator (LO)
frequencies and provided the basic timing reference
for the system. The basic frequency reference for
the exciter was a HP8662A synthesizer signal
generator, which had sufficient stability to support an
overall clutter improvement factor of 60 dB. There
were five transmitters in the system. The X-band
transmitter had a traveling wave tube (TWT) as the
final high-power output stage. The signals from each
of the five high-power transmitters were fed through
their respective circulators to transmission lines. The
X-band signal was transmitted to its antenna in a
separate waveguide. The waveguide run consisted of
3.66 m sections that were connected together during
tower erection.

The signals received from the antennas were fed to
a separate preamplifier for each frequency band. The
first IF for all frequency bands was 740 MHz. The
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first IF entered into a common receiver used for all
frequencies.

The diagram of the receiver and signal processor
is shown in Fig. 1(b). The receiver IF gain could be
varied dynamically according to R or R* sensitivity
time control (STC) function. Both STC functions
provided 40 dB attenuation at 1 Km. In addition, the
preamplifiers (shown in Fig. 1(a)) could be bypassed,
and fixed attenuation could be switched into the
system to avoid system saturation by large target
returns.

The 740 MHz IF signal was mixed to 150 MHz,
where the matched filtering was accomplished.
Additional IF amplification was also provided. The
150 MHz IF signal was converted to I and Q signals
at baseband where the 13 bit analog-to-digital (A/D)
conversion was performed. The Data Collection Unit
provided real-time buffering of the I and Q data and
routed the clutter data to the PDP-11/34 computer or
tape recorder. The Radar Data Processor provided a
real-time A-scope display as shown. Also provided
was a nonreal-time range/azimuth display. The Radar
Control Unit consisted of timing and data control
logic that accepted commands from the computer and
converted them to radar control signals.

Data collection was controlled automatically by the
computer. The system operator input parameters via
keyboard or floppy disk, which established the range
and azimuth limits, frequency, scan rate, waveform,
sampling rate, and polarization to be used for each
experiment.

The instrument maintained coherence and stability
sufficient for 60 dB, two-pulse-canceller clutter
attenuation in post-processing; it had uncoded pulsed
waveforms, with two pulse lengths available in each
band to provide high and low range resolutions.
Polarization was selectable as vertical or horizontal,
with transmit and receive antennas always copolarized,
i.e., the cross-polarized component in the radar return
signal could not be received. Frequency, polarization,
and pulse length as well as spatial extent in range and
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TABLE I
Parameters of Phase One Radar

Frequency Band VHF UHF L-Band S-Band X-Band

(MHz) 165 435 1230 3240 9200
Polarization (TX/RX) VV or HH
Range Resolution 150, 36, 15 m

Azimuth Resolution  13° 5° 3° 1° 1°
Peak Power 10 KW (50 KW at X-Band)
Antenna Control Step or Scan through Azimuth Sector
Tower Height 18.3 or 30.5 m
10 Km Sensitivity normalized RCS = —60 dB
Amount of Data 25 Tapes/Site
Acquisition Time 2 Weeks/Site

azimuth of the recording window, number of pulses,
and pulse-repetition rate were selectable by computer
console for each recorded clutter experiment.

The instrument was self-contained and mobile
on truck platforms. Antennas were mounted on
erectable towers and had relatively wide elevation
beams that were fixed horizontally at 0° depression
angle. The radar was internally calibrated for every
clutter measurement and externally calibrated at
almost every site, using standard-gain antennas and
corner reflectors mounted on portable towers. The
characteristics of the Phase One radar are reported in
Table 1.

B. Data Acquisition

The analyzed clutter data files were recorded
at X-band at Wolseley, Saskatchewan, located on
the Canadian prairie at a latitude of 50.36° N and
a longitude of 103.15° W. The illuminated area was
covered by agricultural crops (83%), deciduous trees
(11%), lakes (4%), and rural farm buildings (2%). The
terrain was a sequence of gentle slopes (< 1°,< 2°)
with a relief of 25-150 ft.

The analyzed X-band (9.2 GHz) data are divided
in two different sets. In the first one (NO07001.35) the
polarization is HH, in the second one (N007001.34) it
is VV. Each set contains four range intervals recorded
in scan mode, and each range interval contains 316
range cells. The scan velocity was 2°/s, i.e., about
2 beams/s. The emitted pulse repetition frequency
(PRF) was 500 Hz, but only 1 out of 2 pulse returns
was recorded. The pulses were further coherently
integrated in groups of 16, so the effective PRF of the
data from this experiment is 15.625 Hz.

The data were stored in a 316 x 703 matrix,
each row for a fixed range, each column for a fixed
azimuth. For each integrated pulse, 316 range samples
are provided at 10 MHz sampling rate. The data
were collected one range interval after another in
“windshield-wiper” mode. In these Wolseley data, for
the first range interval the antenna scanned 270° to
360° (from the north) while 316 range samples were
collected covering about 1 to 5.7 km for each of 703

pulses. For the second interval, the antenna scanned
back from 360° to 270° while 316 range samples were
now collected covering about 5.7 to 10.5 km. For the
third range interval, the antenna scanned 270° to 360°
while data from about 10.5 to 15.2 km were collected,
and for the fourth range interval the antenna scanned
360° to 270° while data from about 15.2 to 20.0 km
were collected.

The radar depression angle decreased from about
1.5° to 0.7° across the first range interval, and further
decreased to ~ 0.5° in the second interval, to ~ 0.3°
in the third interval and to ~ 0.2° in the fourth range
interval. The azimuth beamwidth of the antenna was
0.018 rad at HH polarization and 0.019 rad about
1° (i.e., at VV polarization). The nominal azimuth
sampling interval was 2/15.625 = 0.128°/pulse;
thus for each range cell the radar recorded seven to
eight azimuth samples. The range resolution was
15 m (i.e., pulse length = 100 ns, which matches the
10 MHz sampling rate). The return from each pulse
was provided in I and Q format calibrated in units of
(radar cross section)!/2 [2].

The analysis was performed on the data after
normalizing them with respect to the square root
of the cell area. This normalization is helpful in
comparing results for statistical populations extended
in range, as with the Wolseley data. The cell area
is A = D AD A8, where D is the distance of the
illuminated area from the radar, AD is the range
resolution and A@ is the azimuth resolution. The
normalization makes the amplitude values of clutter
returns independent of the distance.

In Fig. 2(a) the 2D clutter map relative to the first
range interval of the VV polarized data is reported.
The data are plotted in logarithmic scale to span the
grey-scale code (0-255). The black areas of the image
indicate regions of high radar reflectivity, usually from
discrete vertical clutter sources, such as buildings,
fence lines, trees, and bushes, aligned along roads
and field borders; the white areas indicate regions of
relatively low reflectivity, such as field surfaces. On
the x-axis the 316 range samples are reported from
1 to 5.7 km, whereas on the y-axis the 703 azimuth
samples are from 270° to 360°. Fig. 2(b) shows the
same data of Fig. 2(a), but in a 3D format to highlight
the presence of spikes, well evident in this range
interval.

Wolseley is a generally open farmland site of low
relief. Good visibility of the land surface is provided
from the radar antenna of all four range intervals
for which clutter data are reduced and results are
discussed in this work. At open farmland sites like
Wolseley, spatial clutter statistics are dominated
by spatially localized, fixed, discrete scatterers that
comprise all the vertical objects that occur on the
landscape. These include the following: isolated
trees and small clusters of trees; agricultural field
boundaries and the vertical objects along them such
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Fig. 2(a). 2D clutter map of 1st range interval, VV polarization.

Fig. 2(b). 3D clutter map of 1st range interval, VV polarization.

as fences and higher uncultivated vegetation (tall
grass, shrubs); roads and the vertical objects along
them such as utility poles and wires; banks of streams
and creeks; complexes of farm buildings and farm
machinery; other cultural artifacts such as water
towers and radio towers; and, also, locally high

points in the microtopography itself. Such discrete
objects cause strong spikes of clutter distributed
randomly over the agricultural field surfaces, which
themselves constitute a relatively weak, area-extensive,
backscattering medium. These spikes of clutter are
observed in Fig. 2, where the curvilinear patterns
indicate field and road boundaries on a predominantly
north—south, east-west grid. Such spikes are of
extremely wide variation in amplitude and result

in long tails in empirical clutter spatial amplitude
distribution applicable to such terrain.

We performed the same analysis that is described
in Section IV on temporal data from a different Phase
One X-band file relative to range intervals containing
windblown trees in contrast to open farmland. A
sample of the results is reported in the Appendix in
order not to disrupt the flow of the paper. The analysis
shows 1) how different spatial and temporal clutter
statistics can be from one another, and 2) how the
procedures used can generate wholly different results
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and find Gaussian statistics when they exist in the
clutter.

If.  ANALYSIS OF | AND Q CLUTTER COMPONENTS

The first step of the analysis was to check whether
the I and Q components have Gaussian pdfs. To
this purpose we drew the histograms of the I and
Q components, for each range interval and for each
polarization (VV and HH). The histogram (also
called the empirical pdf) was compared with the
Gaussian pdf having the same mean and variance of
the data. The dc offset of each channel was estimated
from each of the four range intervals of 316 x 703 =
222,148 samples, and then subtracted from the data.

This analysis, performed on each range interval,
has shown that I and Q pdfs deviate considerably
from Gaussianity; the clutter amplitude is therefore
not Rayleigh distributed. This deviation is well evident
in Fig. 3, where the histogram of the I component
for the fourth range interval (VV polarization) is
compared with the Gaussian pdf having the same
variance and zero-mean.

These results were confirmed by estimating the
skewness and kurtosis, defined, respectively, as

28 E{Z 7)) 28 E{Z-pp)'} 4
STE@-mp P T EHE nP
1
where p1, Lk {Z} is the mean value of the random

variable Z. The skewness characterizes the degree

of asymmetry of a distribution around its mean

value. A positive value of skewness corresponds to

a distribution with an asymmetric tail extending on the
right of the mean. A negative value of the skewness
corresponds to a distribution with an asymmetric

tail extending on the left. The kurtosis measures the
relative peakedness or flatness of a distribution.

For a Gaussian pdf these two parameters are
identically zero, so they are a measure of the deviation
from Gaussianity. The estimates of the skewness
and kurtosis from two range intervals are reported in
Table II. The asymmetry is not significant for either
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TABLE II
Standard Deviation, Skewness, Kurtosis

Ist Range HH Polarization VYV Polarization
Interval I Q I Q
stand. dev. 0.00931  0.00924 0.0110 0.0107
skewness —-0.22284 0.18859 -0.1199 0.2341
kurtosis 260.929  257.923  277.728  271.549
4th Range HH Polarization VV Polarization
Interval I Q I Q
stand. dev. 0.0081 0.0086 0.0111 0.0111
skewness 0.0918 0.0522 0.078 -0.173
kurtosis 115346  111.309 131.982 133314
04
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0.35F - 4th'r interval weeeeee- uniform [
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Fig. 4. Phase histogram, 4th range interval, VV polarization.

polarization; v¥ = 0, except for estimation errors. On
the contrary, the peakedness is considerable (see also
Fig. 3), particularly for the first range interval (e.g.,
4% = 261 for HH data). The results for the I and Q are
very similar, as expected because they should have the
same statistics.

We also analyzed the phase statistics, i.e., the
distribution of ¢ = arctg(Zo/Zy). It is generally
accepted that the phase statistics of ground clutter
are uniform. This uniformity assumption seems to be
correct because the phase ¢ is associated only with
the absolute distance d of the ground clutter scatterers
from the radar, and with the operational wavelength
A (@ = 4nd/)). It is reasonable to expect that nature
does not favor one location of scatterers over another
with respect to the radar. However, if care is not taken
in the estimation of the phase statistics from I and Q
samples, strange results can occur. For example, any
dc offsets on the I and Q components will force the
point (0,0) to fall away from the center of the square
A/D quantization grid causing certain phases to be
favored.

Another problem is due to quantization effects.
Because the quantization of the A/D converters is
independent of the amplitude of the I and Q signals,
smaller amplitudes will result in larger quantizations
in phase, and larger amplitudes will have a much finer
phase quantization. In Fig. 4 a typical phase histogram
from VV clutter data is reported. In this case, the
phase distribution is almost uniform.
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Fig. 5. Azimuthal correlation coefficient, 4th range interval,
H polarization.

. SPECTRAL ANALYSIS

Spectral properties may have a significant effect
on the performance of processing algorithms aimed
at suppressing clutter for signal detection, especially
in terms of FAR behavior [10, 27]. Hence, to
characterize the coherent clutter process further we
investigated the spectral properties of the disturbance.
In this section we present the results of the analysis
performed on the VV and HH data.

A. Azimuth Spectral Analysis

To estimate the azimuth power spectral density
(PSD) of the clutter we first used the nonparametric
approach based on the Fourier transform (FT) of
the autocorrelation sequence. The autocorrelation
sequence was estimated from the data without making
any assumption, other than the stationarity, about the
structure of the clutter process. The sample estimator
processed M = 316 records {z,}}., one for each
range cell, of N = 703 complex samples according
to the following algorithm [17, ch. 9]:

M N-m-1

Rom= 23" Y agnem)

k=1 n=0
= 2R, (m) + j2R,,, (m) )

where z;(n) and zo(n) are the in-phase and quadrature
components and z(n) = z,(n) + jzo(n) is the complex
envelope of the observed signal. In Fig. 5 the
correlation coefficient, p,(m) 2 R,(m)/R. (0) is reported
for the fourth range interval. It is observed that the
signal decorrelates to 0.29 in one 1° beamwidth, and
to ~ 0 in four beamwidths. It is worth observing that
the imaginary part of p (m), i.e., the cross-correlation
coefficient Rzle (m)/R,(0), is approximately zero.

The nonparametric PSD of Fig. 6 was obtained by
zero padding p,(m) to 1024 points and then Fourier
transforming via FFT. The spectral content (~ +3 dB)
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in Fig. 6 largely falls within 2 Hz (i.e. £1 Hz), which
matches the decorrelation time shown in Fig. 5 to be
~0.5s.

If a clutter scatterer is an absolutely motionless,
large object like a water tower or a feed-storage
silo, the spectral density of the fixed-beam temporal
return is simply proportional to the absolute square
of the FT of the pulse shape, of very narrow spectral
width about zero Doppler, where the narrow width is
inversely proportional to the interval of observation.
We call this a dc return and in fact use such water
tower experiments to check system performance in the
field. More generally, however, when we look at long
sequences of X-band pulses from farmland clutter
cells, we almost always see a strong dc component
in the spectrum of the return at relatively high levels
of spectral power, but spectral broadening due to
windblown vegetation at lower levels of spectral
power. Such intrinsic-motion spectral spreading is
important in quantifying MTI performance against
small targets. Quantification of intrinsic-motion
spectral spreading is not the subject of this work,
but is taken up elsewhere using long-time-dwell
experiments with a stationary antenna beam (4], as
opposed to the slow-azimuth-scan, short-time-dwell
experiments analyzed here to quantify the cell-to-cell
spatial statistics of clutter. In these latter experiments,
the scanning motion of the antenna results in relative
radial velocities of the clutter scatterers with respect to
the antenna. The spectral broadening shown in Fig. 6
is due to this antenna radial motion. This broadening,
which in totality lies within the interval bounded by
+5 Hz, is wide compared with the width of the dc
return (~ 0.015 Hz), but narrow compared with the
intrinsic-motion spectrum (typically, within +£60 Hz at
X-band in farmland). If the intrinsic motion spectral
broadening could be seen at very low levels (i.e., at
levels 60 to 80 dB below the zero-Doppler peak in
Fig. 6, it would be observed to be symmetric about
zero Doppler because the back-and-forth motion of
the vegetation causes symmetric positive and negative
Doppler components in the spectrum. The spectrum of
Fig. 6 is observed to be symmetric about zero because

584

the rotating antenna also has symmetric components
of radial motion towards and away from the clutter
cell. In either case, one would not expect asymmetric
Doppler shifting in azimuthal samples.

As a comparison, in Fig. 5 the beam pattern of the
antenna is also displayed. Fig. 5 shows that, although
the azimuthal decorrelation is mainly caused by the
antenna pattern, the experimental data cannot be
simply predicted from the pattern.

In Fig. 6 we also represent the PSD obtained by
a parametric approach based on an AR modeling
assumption.! The characteristic parameters of the AR
model were estimated by the method of linear least
squares (LS) [26, p. 564]. The parameters of an AR
model of order P, synthetically AR(P), are related to
the PSD by the following expression [26, p. 505]:

|bol?
T+ ae 2/« +ae PPIp

S.(e”) = 3)
The coefficients {a;}!_, were estimated from the
estimates of the autocorrelation sequence by solving
(in the LS sense) the overdetermined Yule—Walker
equation:

R,a=0 )
where
[R,(1)  R,0) R(—P +1)
REé : : : R and
(R(L) R(L-1) R,(L—P)
(5)
r 1
A 211
a=
Lap

with L > P. Ry is an L x P matrix. Once the {q;}/_,
are estimated, we obtain an estimate of |b,|? as

lbol? = 1+ P _, R (m)a,, [26, p. 508]. The L-P extra
equations provided in (5) would be redundant in

the ideal case. Owing to estimation errors, the extra

'The Wierstrass Theorem asserts that continuous PSD can be
approximated arbitrarily closely by a rational PSD, i.e., by an
autoregressive moving average (ARMA) model, provided that the
order is sufficiently large [24, ch. 3], that is, the rational PSDs form
a dense set in the class of all continuous spectra. This observation
partly motivates the large interest of the radar community on AR
models (see e.g., [15, ch. 2] and references therein). The rationale
for adopting AR models for the radar echoes is to have a highly
parametrized model with a minimum number of parameters that
can be easily estimated. Once the model is determined for the data
description, we can formulate the target detection problem (which
is not tackled in this work) as testing a hypothesis about the model
parameters, for which the likelihood test can be constructed; this
technique is known as model-based detection [15, ch. 2]. Moreover,
AR modeling is also necessary here for finding the minimum
number of lags necessary to implement the cumulant-based
Gaussianity test described in Section IV.
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equations provide information that can lead to a better
estimate of the model parameters.

To choose the order P of the AR model, we
tried Akaike’s information-theoretic criteria (AIC)
and Rissanen’s minimum description length (MDL),
but neither of these procedures was useful for
selecting the model order. AIC and MDL may not
be appropriate for this problem because the collected
clutter data were only scanned one “look” (or one
snapshot), and there is not enough input to use the
MDL or the AIC procedure to come up with the order
of the AR model. Therefore we fixed L = 10 and tried
to fit the nonparametrically estimated PSD with AR
models of increasing order, starting from P = 1. The
fit starts to be fairly good for P = 3, as shown in
Fig. 6 for HH polarization. The resuits for the other
intervals and the other polarization are very similar.

B. Range Spectral Analysis

To estimate the range PSD we performed only a
nonparametric analysis. We calculated the correlation
for each azimuth cell, and then we averaged the
703 estimates. The correlation coefficient pg(m) is
plotted in Fig. 7. Comparing this figure with Fig. 5
we observe that the two decorrelation times are quite
different. Along the azimuth direction the coefficient
reduces to 0.1 in a few seconds, whereas, along the
range, we have the same decreasing in few hundreds
of nanoseconds. These apparently large differences
are merely the result of the different time-sampling
frequencies utilized in range (10 MHz) and in azimuth
(15.625 Hz). The PSD has been obtained by zero
padding to 1024 points and then Fourier transforming
via FFT. The plot is not reported here because it is
almost flat, in fact, the correlation time of ~ 100 ns
(~ one pulse length) provides frequency content
over the complete +5 MHz Nyquist frequency range
provided.

The assumption usually made in adaptive radar
detection (see, e.g., [15, ch. 3]) of independence of the
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data from different range cells seems to be reasonable
in the Wolseley data.

The important thing to observe in considering
Figs. 5-7 is that, owing to the heterogeneity of the
spatial scattering ensemble in open farmland terrain
(strong discrete sources dispersed over a weakly
scattering medium), the returned signal from the
scanning antenna largely decorrelates from one
spatial cell to the next, whether the variation is in the
range direction or in the azimuth direction. Consider
first the azimuth variation results of Figs. 5 and 6.
The azimuth extent of the spatial resolution cell is
determined by the beamwidth of ~ 1°. The scan rate
is 2°/s, so the expectation is that the returned signal
would decorrelate in ~ 1 beamwidth or ~ 0.5 s. Fig. 5
shows the azimuthal correlation coefficient to drop to
0.29 in 0.5 s (one beamwidth), but to take ~ 2 s (~4
beamwidths) to decorrelate to zero. This largely meets
our expectation of decorrelating in one azimuthal
interval, given that the azimuthal cell specified is the
3 dB beamwidth, with resultant beam overlap between
1° cells (see Fig. 5). The azimuth sampling rate used
in data acquisition was 15.625 samples (pulses)
per second. That is, in azimuth the sampling time
(0.064 s, that is, the reciprocal of 15.62 Hz) is much
less than the cell size (~ 0.5 s). The azimuthal PSD
in Fig. 6 shows that the correlation time of ~ 0.5 s,
i.e., ~ 1 beamwidth, matches the frequency content of
~ +1 Hz.

Consider again the range-variation results shown
in Fig. 7. The range extent of the spatial resolution
cell is determined by the 3 dB pulse length, which
is specified to be 100 ns. This is matched to the
range sampling rate of 10 MHz (i.e., in range, the
sampling interval equals the cell size). Therefore, the
expectation is that in range the returned signal would
largely decorrelate, sample-to-sample, in ~ 100 ns.
Fig. 7 shows the range correlation coefficient to
drop to 0.3 in 100 ns (one pulse length), but it takes
300 ns (3 pulse lengths) to decorrelate to zero. Thus
the range results of Fig. 7 very closely match the
azimuthal results of Fig. 5, in terms of equivalent
cell-to-cell decorrelation in azimuth and range.

IV. GAUSSIANITY TEST

A. Mathematical Background

Now we test for the Gaussianity of I and Q
components by means of a cumulant-based test.
This test is particularly suitable for parametric
autoregressive moving average (ARMA) models
because it employs the minimal number of cumulant
lags that uniquely characterize ARMA processes
[14]. It is well known that for a zero-mean Gaussian
process the cumulants of order k > 3 are identically
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zero [13, 21]. Thus, they can be used to quantify
deviations from Gaussianity.

The third- and fourth-order cumulants of a
zero-mean, stationary real random process? z(n) are
defined, respectively, as

UL L) SEmz(n+ 1)z + 1)} (6)
and

Uyl l3) 2 Efz(mz(n + 1)z(n + Lp)z(n + 1))

— 35Uy — 1) — Ui = 1)
— c3U3)c5(l — 1) ™)

For our zero-mean process, the autocovariance
sequence c¢5(I) can be consistently estimated using the
autocorrelation sample estimator:

N-1-1
8§(I)=11V 3" wmyen+D),  for 1>0 (8)
n=0

and, similarly, the sample estimates of the third- and
fourth-order cumulants are given by

N-1-],

A 1
alph) =& > wmz(n+1)z(n +1y),
n=0
for (,lpely (9
and
1 N-1-4
CACR AR 3" zm)z(n +1)z(n + L)z(n + 1)
n=0

= &3)EU, - 13) - G0~ 1)
— BUNE, — 1)),

for (L) ely  (10)

where N is the sample size. Note that the sample
estimates in (8), (9), and (10) need to be computed
only over lags in the nonredundant cumulant regions
{IV; k = 2,3,4}, defined as [13]:

IVE{0<l,_ < <1, <N}. (1
The remaining lags can be deduced by using the
symmetries present in cumulants [13, 14]. If the
process is ARMA(P,Q), the number of cumulant lags
that characterize the model uniquely is finite. These
lags belong to the region:

L(Q +3P)2{|l, |1, < Q +3P,—P <1, < 2P,
i=3,...,k~l}. (12)

So, the Gaussianity test we applied to the clutter data
employs a finite number (N,) of lags of c¢§ and cj. If
the clutter process is AR(P), the number of ¢§ lags

2The Gaussianity test has been applied to the I and Q components;
to simplify the notation in this section we use indifferently z(n) in
place of z;(n) and zQ(n).
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characterizing the process is N, = 3P(3P + 1)/2 [14].
We collected these lags into two N, x 1 vectors, ¢}
and ¢}, respectively. The Gaussianity tests are based
on the asymptotic Gaussianity of ¢§ and cj, and zero
mean value. For stationary processes with absolutely
summable cumulants [14]:

If .
S Gl < oo
Nl =—00
V ki=1,.. k-1 (13)
Then ‘
VN@E - cg);zt N©X0,S,) (14)

where ¢} is the theoretical third-order cumulant
vector, ¢ = limy_,  E{&}, and S, is the asymptotic
covariance matrix of ¢:

S.2 lim E{&-)@&-)"IN  (15)
where T stands for transpose; S, is an N, x
N, dimensional matrix. If P.(/, j) denotes the
cov{ég(ll,lz),ég( Ji»J»)}, then the covariance matrix
P, = N-!IS_, for N large enough.

The covariance matrices of ¢§ and ¢} must be
estimated from the data. By using independent records
of the process, e.g., those coming from different range
cells, the covariance matrix of ¢§ is estimated as

at . 1 R ~z(r
R = 5 2 1570 1) — G, )]
r=1

X &7 U Jo) = TG 7] (16)
where 24(l,,1,) 2(1/R) R, &), 1,) and R is the
number of available records in range. [,,/, are the
indexes relative to the lags of the cumulants, [ is the
index relative to the position held of each cumulant
lag in the cumulant vector. The meaning of j;, j, and
j is the same. The covariance matrix of ¢} is estimated
in a similar way.

The Gaussianity test that uses the third-order
cumulant is formulated as the following binary
hypothesis testing problem:

{Ho 1 &R NOWON!S))
H, : &= NOGE,N7IS) with ¢ #0.
a7

The test based on the fourth-order cumulant is
formulated in a similar way. Recalling that kth-order
cumulants of Gaussian processes vanish for k > 3, it is
clear that ¢§ # 0 implies non-Gaussianity (hypothesis
H)). The Gaussianity test can be addressed using a
chi-squared test based on the statistic d ; defined as
follows:

dg3 2 N@&)'S;'& (18)
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where S;! is the inverse of the matrix S, = NP, (or
the pseudoinverse if S, is rank deficient).

In fact, in [14] it was demonstrated that under
H, (c§ = 0) dg ; converges in distribution to a central
chi-squared pdf with Nc degrees of freedom, i.e.:

dist. 4

dgy = .
G3 T XN

19

Therefore, for an a-level of significance, the test in
(18) reduces to a chi-squared test:

H;
dg3 2 tg = Xx (). (20
Ho
The threshold ¢, is found using x? tables, after fixing
the probability of false alarm:

B =a <Pr{dg3 2 x3, | Hp}. @1

B. Results on dg ; and d; 4

As discussed in Section III, the azimuthal spectrum
of the clutter well fits an AR(3) model, both for HH
and VV data. We applied the Gaussianity test on
the I and Q components of the clutter data assuming
P =3 and Q =0, so obtaining N, = 45. We used 316
records (one for each range cell) of 713 azimuthal
samples. We repeated our analysis for all the four
range intervals.

The ¢} lags in I;(3P) needed for the test were
estimated for each row using 703 samples for each
range cell as follows:

702-1,

&yl = 03 g 2m)z(n +1))z(n + 1), 22

(1, 1)y e (3P).
Each row was considered as an independent record, so

316

PR 1 azlr ~

E@D =316 DGO -, 1))
r=1

x [0y, 1) = GG )] (23)

where &(1;,1,) = 5= 218 10, 1).

The a-level of significance being fixed at 2%,
the threshold ; for a x? of order N, = 45 is almost
equal to 55 [25, p. 1237]. Fig. 8, referring to the I
component z;(n), depicts 316 values of the statistic
dg 3 and the threshold value for the fourth range
interval and HH polarization. It is evident that the
threshold stays above the statistic in almost every
realization. A similar result was obtained for the Q
component. This does not necessarily mean that the I
and Q components of the land clutter are Gaussian: it
is possible that E{¢{} = 0 even if z;(n) (and zo(n)) is
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Fig. 9. d;, statistic for I component (z), 4th range interval,
HH polarization.

non-Gaussian, it is sufficient that the pdf of z;(n) (and
zg(n)) is symmetrically distributed around zero.

Thus, because H, is accepted in the d 5 level,
the test was continued by considering also the
fourth-order statistic:

dg4 SN@&)S;'E. (24)

Fig. 9 depicts the 316 values of the statistic dg 4
(I component), relative to the 316 range cells of the
fourth range interval, and the threshold. The results
relative to the Q component are very similar. Because
in this case the threshold is often overcome, the I and
Q components are non-Gaussian.

It is worth observing that the order of the AR
process can be influenced by the antenna motion
that spreads the PSD of the clutter. This means that,
without the motion, the order of the AR model could
result higher. This is not a problem. In fact, N, is
the minimum number of cumulant lags to check for
the Gaussianity, but it needs only a cumulant lag
different from zero to verify the non-Gaussianity.
So, if the actual order of the AR process had been
higher, for example P = 4 and so N, = 78, the results
would have been the same: the data are non-Gaussian.
Summarizing, underestimating the order P does not
affect the final result of the test when the data are
non-Gaussian.
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V. AMPLITUDE PDF ANALYSIS

To complete our study, we performed an
incoherent analysis looking for the best fit of the
clutter amplitude pdf. Many distributions have been
proposed in the literature to model the amplitude
pdf of spiky clutter, see for example [1, 2, 6-8, 12,
19, 20, 22]. In this work, we compare the empirical
pdf with the K, log-normal (LN) and Weibull pdfs
having the same first- and second-order moments,
and with the Rayleigh pdf having the same variance.
Herein we report the expressions of these pdfs and
their moments (see [19, 25, p. 237, and 25, p. 182]);
in the following, Z denotes the amplitude, i.e., Z =

o+ jzgl = /2f +23.

A. K-Distribution

pdf:
Vv 2v ’ 2v
pz(2) = —\/W <\/;Z) K, <\/;Z> u(z)
(25)
moments:
ay_ QuMPT (v +n/2)T (n/2 + 1)
E{Z } - Vn/ZF(U) )
n=12,... (26)

where u(-) is the unit step function, I'(:) is the gamma
function, K,,_(-) is the modified Bessel function of
the third kind of order v — 1, v is the shape parameter,
and p is the scale parameter of the K-distribution.

B. Log-Normal Distribution

pdf:
6 1 2
= -5+ 61 27
pz(2) . \/2—7Te><p( 2( n(2)Juz) 27
moments:
Y = (L =
E{Z"} = exp [5 (25 9)], n=12.. @8
where § is the shape parameter and ¥ is the scale
parameter of the log-normal distribution.
C.  Weibull Distribution
pdf:
c—1
P@=7(5) ewl-@/bk@ @9
moments:
E{Z"} =b"T(n/c + 1), n=12,... 30)

where b is the scale parameter and c is the shape
parameter. The Rayleigh distribution is a particular
case of the Weibull distribution for ¢ = 2.
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Fig. 10. Amplitude histogram, 4th range interval,
HH polarization.

The data seem best to fit the Weibull distribution
for the first and second range intervals, while for
the third and fourth range intervals the data show a
behavior that is intermediate between Weibull and
log-normal. The results of histogram analysis for
the fourth range cell are reported in Fig. 10 on a
log-scale. The same results were obtained for the
VV data of the Wolseley site. The characteristic
parameters of the theoretical pdfs were estimated by
the method of moments (MoM) [17, ch. 9], exploiting
the following relationships:

- E{Z*} _ 4T
E{Z*} =24, EX{Z}  #l2(v +0.5)
(31a)
1 9 E{z?
B@=ow (g -5):  Figy -ow/D)
(31b)

E{Z?} TQ@2/c+1)
E2{Z} T2(l/c+1)

(31¢)

E{Z} =bT(1/c+ 1),

for the K, the log-normal, and Weibull distribution,
respectively. Table III lists the estimated parameters
for each range interval and for both the polarizations.
We observe that the values of the estimated scale
and shape parameters for the four different range cells
are of the same order of magnitude, but are obviously
different for different pdfs.
Then we estimated normalized moments, defined
as
a E{Z"}
my (n) = E—nm .
The estimates for the VV and HH polarizations show
good agreement with the Weibull distribution for the
first and second range intervals, and an intermediate
behavior between the Weibull and the log-normal
distribution for the third and fourth range intervals.
In particular, {m,(n)}$_, are displayed in Fig. 11
for the fourth range interval and HH polarization.

(32)
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TABLE III
Scale and Shape Estimated Parameters for K, Log-Normal,
Weibull PDFs

Log-Normal
Range K Distribution Distr. Weibull Distr.
Interval v w ) b2 c b
Ist HH 3.68E-2 8.46E-5 0.633 433 039 1.01E-3
Ist VV 443E-2 1.25E-4 0.655 424 041 1.56E-3
2nd HH 5.12E-2 1.58E-4 0.673 4.19 043 2.09E-3
2nd VV 448E-2 3.02E-4 0656 396 041 246E3
3rd HH 5.32E-2 1.85E-4 0.68 416 043 237E-3
3rd VV 4.55E-2 3.71E-4 0.658 389 041 2.78E-3
4th HH 8.48E-2 7.49E-5 0749 463 050 2.54E-3
4th VV  7.07E-2 144E-4 0.720 432 047 291E3
10" — . —
" o estimate s
100F | -oeeeeee K 7 4
L |- —--LN s
Weib. Vi T
10%- Y, B
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-
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Fig. 11. Normalized moments, 4th range interval,

HH polarization.

For comparison, in the same figure, the theoretical
normalized moments are reported.

D. Weibull Paper

To verify the good fit of the data to the Weibull
distribution, we also used the Weibull paper (or Boothe
diagram). The scale of this paper is obtained by the
logarithmic transformations [6]:

X = 10log(2),

z (33)
Y = 10log [——ln (1 ——/0 pz(z)dz>] .

If we apply the transformations (33) to the Weibull
pdf of (29) we obtain

Y = cX — 10clog(b). (34)

Equation (34) represents a line whose slope gives the
shape parameter ¢ of the Weibull pdf.

In Fig. 12 we compare the plot relative to the
histogram and the straight line, relative to the Weibull
pdf with the same mean and mean square value. The
straight line obtained by linear LS fitting, [17, p. 520],
is also reported; it furnishes the estimates of  and ¢
reported in Table IV.

The MoM and the LS techniques provided very
similar values for the parameters b and c¢; compare
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TABLE IV
b and ¢ Estimates with LS Method
Range Weibull Param. RMS
Interval c b Error
1st HH 0.28 5.740E-4 6.28E-2
1st VV 0.32 9.798E-4 3.00E-2
2nd HH 0.33 1.516E-3 2.48E-2
2nd VV 041 2.661E-3 8.88E-3
3rd HH 0.44 2.602E-3 3.59E-2
3rd VV 0.47 3.890E-3 5.32E-2
4th HH 0.44 2.015E-3 1.36E-1
4th VV 0.50 3.220E-3 1.33E-1

the sixth and seventh columns of Table III with the
second and third columns of Table IV. In Table IV,
the rms error of the LS method is also reported. The
fitting is good for the first and the second range
intervals, for HH and VV data. For the third and
fourth range intervals, a nonnegligible deviation is
present for small values of X (see Fig. 12). This
deviation is due to the presence of radar noise
corruption at low signal levels. If the radar did not
have this noise limitation, the Weibull fit would be
certainly good over the whole X axis.

E. Modified Kolmogorov-Smirnoff Statistical Test

The analysis was concluded by applying a
statistical hypothesis test. The KS goodness-of-fit test
has been largely used to determine which distribution
(Rayleigh, log-normal, Weibull, or X in our case)
best fits the data. Unfortunately, in some cases it is
not useful, because it places an equal importance
on all regions in the probability space. In practical
radar applications a good fit is important in the tail
regions of the pdfs. The tails, in fact, contain the
strong values (i.e., the spikes) that, considered as
target returns by a detector, can increase the FAR.
Since good fitting in the tails is mandatory for correct
design of CFAR processors, especially when low
Pes values are required, the KS test is of limited use
for clutter data (as recognized also in [3 and 7]). To
overcome this problem we propose here a modified
Kolmogorov—Smirnoff (MKS) goodness-of-fit test.
The idea is simple: apply the standard KS test by
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taking into account only the tail regions, i.e., by
considering only the data above a given threshold
Amks and the modified theoretical pdfs p; yxs(2) =
pz(@u(z — Ayks), where u(-) is the unit step function.

The standard two-sample KS test verifies whether
the recorded data are distributed in accordance with
a hypothetical pdf. The test is characterized by the
parameter « that represents the probability of Type I
error, namely the probability of having an error if we
reject the null hypothesis H, (empirical distribution
equal to hypothetical distribution). If this probability
is very low, for instance < 1%, then the hypothesis H,,
should be rejected [18].

We first applied the standard two-sample test,
which considers the entire definition range of the
random variable Z under investigation, and we
obtained a probability of Type I error always < 1%,
for all the distributions (Rayleigh, log-normal,
Weibull, and K); thus, in the classical formulation,
the KS test is not useful with these data. This is
due to the differences exhibited by the distributions
in the region of low values of Z (see Fig. 10). On
the contrary, if we apply the MKS test setting the
threshold Ayks in the region (0.01,0.03), where
the distributions are very similar (except for the
Rayleigh), the result for the parameter « is always
100%. This means that, in this central region, the
KS test cannot distinguish between the different
proposed models. But, as written above, we are
mainly interested in the tails of the distribution, so
we applied the MKS test with Ayxg = 0.03. In this
way we left out of the analysis the central region of
the pdf, corresponding to high values of B, (say,
Pz > 1072). The results are reported in Table V.
Generally, the value of a for Weibull pdf is higher
than for the other pdfs, so the good fit of our ground
clutter data to the Weibull model is confirmed.

VI.  CONCLUSIONS

The primary objective of our analysis was to
quantify the statistics applicable to the cell-to-cell
spatial variation of ground clutter returns from open
farmland for surface-sited radar. For contrast, some
results are also provided in an Appendix involving the
temporal variation of clutter returns from fixed cells
containing windblown trees.

The results of statistical analysis performed on a
ground clutter data set recorded at Wolseley site by
the Phase One radar have been reported. The non-
Gaussianity of I and Q components of these data has
been revealed by means of histogram analysis and a
cumulant-based statistical test. The test based on third-
order cumulants shows that the I and Q components
have a pdf symmetric around zero, which does not
mean, however, that they are Gaussian distributed; in
fact, the results based on fourth-order cumulants give
strong evidence of the non-Gaussianity of the data.

TABLE V
MKS Test for Amplitude

Range a (Type I Error)

Interval LN Weibull K
Ist HH 99% 99% 19%
1st VV 6.4% 96% 4.2%
2nd HH 1.4% 96% 31%
2nd VV 14.6% 99% 33%
3rd HH 11% 87% 1.3%
3rd VV 62% 55% < 1%
4th HH 84% 97% 1.5%
4th VvV 94% 79% <1%

The spectral analysis was performed in both the
azimuth and range directions. The study highlighted
that, in both range and azimuth, the signal largely
decorrelates (~ 0.3) in one spatial cell (either one
15 m range cell, or one azimuthal beamwidth), and
completely decorrelates (to zero) in few spatial cells.
That the decorrelation time in seconds in the two
directions is very different (tens of nanoseconds
in range, seconds in azimuth) is simply because
the sampling rate in range is fast (10 MHz) and in
azimuth is slow (15.625 Hz). The azimuthal PSD
was shown to fit an AR(3) model well, and this result
was used for the Gaussianity test based on cumulants
of order higher than the second. The range PSD is
almost flat, and this supports the usual assumption of
independence of the data from different range cells.

The analysis was completed by comparing the
empirical with some theoretical pdfs (Rayleigh,
log-normal, K, and Weibull); the moments estimated
up to the sixth order were compared with the
theoretical ones. The best fit has been obtained with
the Weibull model.

These results were confirmed by means of
an MKS statistical test, which we proposed here
for fitting the clutter data only on the tails of the
distributions. Because the standard KS test shows a
probability of Type I error always lower than 1%, for
all the polarizations and all the distributions, the KS
test in the classical formulation was inefficacious. The
differences noted between the two like-polarizations
HH and VYV in land clutter are negligible, both
in the spectrum and in the distribution; this is in
contrast to what is observed in the sea clutter [11],
where the HH data are spikier than the VV data
and a peak-separation in the spectra is often evident
(up-wind condition).

The interest in radar clutter analysis is due to
its importance for successful radar design. The
development of statistical models that properly
characterize radar clutter processes are required
both for optimum detection algorithm design and
for performance prediction. The ultimate goal of our
analysis is to check through recorded live data the
analytical and simulated performance of optimum
and suboptimum coherent receivers operating in
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Fig. 13. Amplitude histogram, file H067032.3.

non-Gaussian environment (see, e.g., [28]) and to »
develop a complete clutter model, applicable to
polarimetric radar.

APPENDIX. WINDBLOWN TREES DATA

We performed the same analysis of Section IV on
a different Phase One X-band file, namely H067032.3,
for which the data were measured from range cells
containing windblown trees in contrast to open
farmland. A previous analysis [9] demonstrated the
data of file H067032.3 to be Gaussian distributed.
This data set was recorded at Katahdin Hill site
at the Lincoln Laboratory by the same Phase One
radar. It contains 30,720 pulses, with a PRF equal
to 500 Hz. Data were recorded from 76 contiguous
range gates using the Phase One X-band stationary
antenna in a fixed azimuth position (235°). The 76
range cells were located from 2.0 km to 3.1 km,
covering windblown trees at depression angle ~ 0.65°.
In Fig. 13 the histogram of the data relative only to
the range cells 34-36 is compared with the Rayleigh
pdf with the same variance. We can assume the I and
Q components to be Gaussian distributed. In Fig. 14
the results relative to the statistic d; ; are reported.
It was shown in [4] that the spectral shape from
windblown vegetation (the most pervasive source of
clutter internal motion) is exponential (see also [5]); in
order to implement the cumulant-based Gaussianity
test we fitted these data with an AR process. We
found that for our purposes a third-order AR model
is a good approximation, consequently, the number
of third-order cumulant lags was fixed at 45. The
statistic values were always below the threshold. This
characteristic holds also for d; 4, as evident in Fig. 15.
The results obtained for the open farmland data
(two data files N007001.34 and N007001.35) are
very different from the windblown trees data reported
in this Appendix and in [9], where the clutter was
found to be approximately Gaussian distributed.
This is partly due to the different land covers of the
illuminated areas, but also importantly, partly due
to the forest data embodying temporal variations,
not spatial. The area relative to the H067032.3 data
file was homogeneously tree covered, primarily with
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Fig. 14. dg 5 statistic for I component (z;), file H067032.3
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Fig. 15. dG,4 statistic for I component (z;), file H067032.3

(windblown trees).

mixed deciduous trees and with occasional pine and
cedar. In the two analyzed data files of this paper,

on the other hand, the returns came from a large
spatial population of fixed discrete sources on open
farmland. This heterogeneity introduces a considerable
spread in the distributions as already noted in [2]. The
differences are also due to the way of recording the
data: the windblown tree data are temporal statistics
(variations in time on a given range cell, or on few
cells) recorded with fixed antenna; the Wolseley
farmland data are spatial statistics, recorded with a
scanning antenna on many range cells.
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