
Fundamentals
of Timing Analysis

Fundamentals of Timing Analysis
Primer

3www.tektronix.com

Table of Contents

Introduction .4

Timing Analysis Challenges .4 - 5

Complex System Errors .4

System Metastability .4

Linking Analog and Digital Domains .5

Common Timing Errors .5 - 8

Metastability Caused by Setup/Hold Violations .5

Sequencing Errors .6

Signal Integrity Flaws in the Timing Domain .8

Causes of Timing Errors .8 - 10

Design Causes .8

Structural Causes .10

Confronting Timing Errors .10 - 14

Preempting Problems .10

Designing for Debug and Verification .10

Finding Problems Efficiently .11

Application Examples .14 - 18

Capturing Setup/Hold Violations .13

Using FPGAView™ to Validate a FPGA .16

Capturing Timing Errors Caused by a Glitch .18

Summary .20

Introduction
Digital circuits are designed to work in a logical and
organized manner, with events occurring in a well-timed
order. Timing analysis, a fundamental aspect of digital
system validation and debugging, is required to ensure
this order commences properly and the digital circuit
performs as expected. It is often a starting point for
hardware engineers to verify functionality and identify
problems in their system.

Although validating system timing may sound simple,
the process of measuring and calculating all applicable
parameters can be tedious and time consuming. It is
essential that digital design engineers understand the
challenges – both existing and emergent – they will face
as they validate and debug their systems.

This primer highlights important timing analysis issues,
such as common errors, their causes and ways to
efficiently confront them. The latest tools for capturing
elusive timing errors and expediting system verification
will also be discussed.

Timing Analysis Challenges
To operate properly, digital circuits must run at a certain
predefined pace, sequence and specification. Any violation
of these predefined criteria impacts system timing and
can cause problems or errors. Therefore, timing analysis
is often used as a starting point to debug a system and
find the root cause of known problems.

Recent trends in the digital design realm have created
new challenges for design engineers. High-speed buses
render digital systems more sensitive and vulnerable to
timing errors. The popularity of Field-Programmable
Gate Array (FPGA) chips has made it difficult to correlate
internal logic with external signals. And with the complexity
of today’s systems, timing errors are often elusive,
necessitating significant effort to identify and resolve.

Complex System Errors

Most high-speed digital systems typically use some type
of internal communication mechanism to transmit data
between sub-systems. A data frame is generated and
sent from one subsystem, and then travels through several
“blocks” to arrive at its destination. Oftentimes these
links do not function reliably, sporadically failing to send
the right signals on time and causing the system to crash.
It is the test engineer’s responsibility to find out why.
These engineers typically face a complex system with
several subsystems and hundreds of channels.

The questions then become: how does the engineer
correlate signal activities and find clues that help resolve
the problem? If there are signals running inside and
outside a FPGA, how does the engineer attain visibility
inside the FPGA? If the engineer suspects a timing error,
what tools can help effectively capture the timing error,
which may only cover several nanoseconds, amidst
complex system activities?

System Metastability

Every engineer has experienced scenarios where errors
are identified with no clues as to their root cause, especially
in the early stages of the validation process. For example,
many embryonic systems perform inconsistently.
Sometimes they crash; other times they fail to deliver
expected outputs. There are clearly “bugs” hiding some-
where in the system, but the cause can be almost anything.
After running the validation board many times, the engineer
may find that there is a correlation between the problem
and system software trying to write certain values to a
control bus. On the clock’s rising edge, the value of the
control bus may be going through D flip-flops and written
to a certain address in the system’s memory.

www.tektronix.com4

Fundamentals of Timing Analysis
Primer

Fundamentals of Timing Analysis
Primer

5www.tektronix.com

To validate those flip-flops, the engineer employs an
oscilloscope to validate channels, one-by-one, to determine
whether there are setup/hold violations occurring on the
D flip-flops. The violation may be caused by an unexpected
propagation delay, meaning the signal trace propagation
delay takes more time than expected and may violate
the setup/hold specification of the D flip-flop, causing
system failure.

Nonetheless, has the engineer captured the entire
setup/hold violation? Do all the other flip-flops in the system
work properly? Setting up oscilloscope probing for every
channel is a very time consuming process. Are there better
tools to use when capturing these violations in a complex
system with so many waveform activities?

Linking Analog and Digital Domains

Many engineers must design embedded systems with
digital potentiometers, a group of serial digital-to-analog
converters (DACs) with a serial peripheral interface (SPI).
They have a FPGA sending data and clock to these serial
DACs. To ensure the DAC clock is aligned to the correct
data, a component datasheet specifies the clock counts
and data (see Figure 1). When a chip selects a signal,
every clock edge will log the data into the DAC.

The analog output often indicates that errors have occurred,
and the engineer must determine the cause. However,
how can the engineer correlate the digital signal inputs with
the analog outputs? An oscilloscope may have captured
glitches on the signal traces, but are they responsible for
the errors? Are there better tools that enable the engineer
to trigger on the glitch and put all the analog and digital
waveforms in a single screen?

The aforementioned cases unveil intrinsic characteristics of
timing errors, which can be elusive to capture and harmful
to the system. To make matters worse, the same timing
errors can appear in several different forms, making it even
more difficult to identify and troubleshoot them.

To capture the real root causes of timing errors, engineers
need to have a solid understanding of their system, a good
problem-solving approach and the right tools.

Common Timing Errors
In general, timing errors are those related to waveform
edge positions. They take on many forms, but there several
distinct commonalities.

Metastability Caused by Setup/Hold
Violations

Setup Time and Hold Time are two important timing
parameters for a digital design. They outline a window of
time for when data must remain stable to guarantee
predictable performance over the full range of operating
conditions and manufacturing tolerances. More specifically,
they dictate the timing requirements of the data input for
a flip-flop or register with respect to the clock input.

SDI

CLK

D7 D6 D5 D4 D3 D2 D1 D0
1

0

1

0

VOUT
1

0

1

0

CS
DAC Register Load

Figure 1. Typical DAC timing diagram.

Fundamentals of Timing Analysis
Primer

6 www.tektronix.com6

A D flip-flop, a widely used device for synchronizing a
system where the clock provides timing to the circuit, is
an appropriate example (see Figure 2).

tsetup is the setup time required by this D flip-flop, defining
the minimum time window the D input signal must be valid
and stable before the clock edge. thold is the hold time
required by this D flip-flop, defining the minimum time
window the D input signal must be maintained to be stable
after the clock edge.

When the D input signal changes within the time windows
that tsetup and thold define, a setup/hold violation may
occur. Setup/hold violations can cause a metastable Q
output, which means the output of the D flip-flop is unpre-
dictable. Metastability can cause chaos in a synchronous
digital system. For example, a downstream device may
become stuck at mid-voltage, rendering it extremely difficult
to determine its state. Things can get worse if the system
has a metastable output that drives two distinct circuits,
with system logic completely failing if one circuit perceives
it as “0” and the other thinks it is “1.”

Setup and hold violations are a common headache when
verifying today’s designs, including FPGAs, memory and
others. And due to the complexity of these designs, it is
difficult to completely eliminate this type of timing error.
Therefore, it is imperative for engineers to have tools capa-
ble of capturing these errors, from a variety of channels.

An oscilloscope is a useful tool to characterize and analyze
setup/hold times. However, an oscilloscope is capable of
monitoring only a small number of channels. Using only an
oscilloscope to capture a setup/hold violation from many
channels can be very time-consuming. With many channel
counts, long record lengths and powerful logic trigger
capability, which triggers and marks the setup/hold timing
error for the user, logic analyzers are typically used to
capture setup/hold violations from multiple signal traces.

Sequencing Errors

Digital circuitry is a very organized environment where
certain tasks are achieved only when specific events occur
in an orderly fashion. For example, to latch the address
of a NAND flash memory, a specific sequence must be
followed. Digital component datasheets provide a blueprint
for this and other tasks, using waveforms to illustrate the
signal sequences and specify the time between signals
(see Figure 3).

In the system verification phase, engineers need to spend
sufficient time verifying whether signals on the circuit
comply with certain requirements and specifications.
If those sequences and specifications are violated, a
sequence error can occur and result in system failure.
For instance, a miscalculated trace length in an embedded
system memory or storage circuit can lead to extra
propagation delay, which may cause timing errors such as
a race condition. In this example, if a race condition occurs
when read and write timing sequences are violated, the
engineer can possibly read incorrect data from memory,
overwrite old data while it is being read or even fail to
read or write any data. All of these possibilities can result
in an illegal operation alert, program shutdown or even
system crash.

FF-D FF-Q

CLK

Data

Q

tsetup

thold

FF-CLK

Flip-Flop

Figure 2. D flip-flop diagram.

Fundamentals of Timing Analysis
Primer

7www.tektronix.com

CLE

CE

I/Ox

ALE

WE

tWCtCS tWC tWC tWC

tALS

tWP tWP tWP tWP

tWH tWH tWH tWH
tALStALH tALH tALH tALH tALH

Col. Add1 Col. Add2 Row Add1 Row Add2 Row Add3

tDS tDS tDS tDS tDS

tCLS

tALS tALS tALS

Figure 3. Flash memory waveform sequence and specification example.

Other factors can also lead to a sequence error, such
as logic errors, glitches and software bugs. The biggest
challenges for design engineers are analyzing timing
sequences and capturing sequence errors from multiple
channels amidst complex system operations.

To conquer these challenges, engineers need to design their

circuitry with total system
visibility during the design
phase, which aids the
subsequent validation and
debugging phases. With
system visibility built into
the design, powerful tools
such as logic analyzers
and oscilloscopes will
be able to help quickly
and thoroughly test and
analyze system activities.

Logic analyzers offer
sophisticated trigger
capabilities, which enable
the user to trigger on
specific events or signal

sequences (see Figure 4). These capabilities enable
engineers to correlate signal activities from multiple buses
and expedite system validation and debugging. In addition,
the logic analyzer’s automatic measurement features help
the user easily attain necessary timing information, such as
pulse counts and delta time between edges.

Figure 4. Logic analyzer power trigger example.

Fundamentals of Timing Analysis
Primer

8 www.tektronix.com

Signal Integrity Flaws in the Timing Domain

Today’s digital systems are more complex and sensitive
than ever before. They operate at much higher speeds,
now commonly in the Gigahertz range. Serial buses are
quickly replacing traditional parallel buses and breaking
speed barriers in the process. In addition, fast edge logic
families are being widely adopted. Because of these
developments, signal traces act not only as resistors, but
also capacitors and inductors, which can cause signal
displacement and create serious timing errors.

At the same time, high-speed systems are increasingly
sensitive, leading to signal integrity issues. Glitches and
timing jitter are two examples of how signal integrity
problems can cause timing errors.

A glitch that can be ignored in a low-speed system may
cause significant timing problems in a high-speed environ-
ment. These unexpected narrow pulses in the signal trace,
which may or may not be interpreted as logic changes
by a system, can be caused by a variety of reasons, such
as race conditions, termination errors, driver errors and
crosstalk. For example, if two long parallel signal traces
are running close to each other, crosstalk may occur and
create glitches (see Figure 5).

Jitter is another big prob-
lem for system reliability
and can be difficult to
analyze. Conceptually,
jitter is the deviation
of timing edges from their
“correct” locations. For
example, jitter in a memo-
ry system may cause the
data line to be clocked in
memory at the wrong
time, which can cause
system failure. This jitter
could be the result of the
frequency of the switching
power supply introduced
to the phase-locked loop
(PLL); it can also be

caused by an unstable clock-recovery PLL design.

The timing errors caused by signal integrity problems are
often characterized by their elusive and transient appear-
ances. Using the latest test and measurement tools, such
as cutting edge logic analyzers and oscilloscopes, can
effectively enhance an engineer’s ability to capture and
characterize these errors.

Causes of Timing Errors
There are many factors that can impact timing performance
in a digital circuit, necessitating an acute attention to detail
when creating and producing today’s designs. Two of the
most common causes of timing errors can be found in the
design and construction of digital circuits.

Design Causes

Due to the complexity of today’s digital systems, human
error is a regular occurrence during the design phase of
system development. Misunderstanding the operation of
purchased components, errors at the register transfer level
(RTL) of intellectual property that have been implemented
in FPGAs and incorrect hardware/software interaction are
common design mistakes that can produce timing errors.

Figure 5. A glitch created by crosstalk, which then causes a timing error.

Figure 6. A simple circuit with clock skew and sample waveforms.

Fundamentals of Timing Analysis
Primer

9www.tektronix.com

One example is an improper clock distribution design
resulting in setup/hold violations (see Figure 6). In this
scenario, a sequentially adjacent register is used to pass
a data input through two flip-flops on the same clock
edge in a FPGA design. Due to limited global resource
restrictions, the designer chooses not to use the clock

network in the FPGA chip, instead connecting two flip-flop
clocks to the clock signal utilizing a normal routing
resource. This causes a delay of the clock signal arriving
between the two flip-flops, which is called clock skew.
When clock skew is not considered carefully according to
the propagation delay on the data path, the second flip-flop
may latch the D1 input logic before the appropriate clock
edge arrives. Consequently, the D1 input passes through
two registers faster than expected and causes timing
errors. Improper clock skew may also cause setup/hold
violations when the D2 switching edge is too close to the
clock edge.

Many other factors, including system software, can also
affect timing performance during the design phase. A
system’s software code must be executed precisely by
the microprocessors and related digital systems; however,
few software engineers are well versed in hardware

operations. As such,
most software is designed
based on assumptions
of what will happen once
the code is executed
over a circuit. Oftentimes
the software may require
more cycles for the
hardware to respond
than expected. This
dynamic can create
sequencing errors when
the output is correlated
with other subsystems.

Fortunately, logic
analyzers are able to
bridge the gap between
the hardware and soft-

ware realms. By correlating software code with real-time
hardware operations, line-by-line, the logic analyzer
delivers a comprehensive view and understanding of
system operations (see Figure 7).

Figure 7. A logic analyzer’s software debug window correlates source code with real-time hardware operations.

CLK1

D1

Q1

Q2

CLK2

CLK

Expected

CLK

D1 Q2

U1
D Q

Q

SET

CLR

U2
D Q

Q

SET

CLRCLK1 CLK2

Fundamentals of Timing Analysis
Primer

10 www.tektronix.com

Structural Causes

After the design phase, engineers must test and debug
their design on one or more prototype boards. Once fully
tested, these boards are turned into models that are used
by manufacturing teams to mass-produce them for market
consumption. However, problems can arise during the
manufacturing phase that were not evident during the initial
testing of prototype boards. These constructive or structural
variances, such as trace length variances or differences
between boards and components used in the manufactur-
ing process, can change prorogation delay values and
cause timing errors. Therefore, engineers must implement
proper design margins to tolerate these manufacturing
variances.

Confronting Timing Errors
Although timing errors are common in today’s digital
designs, there are several tips and tools for efficiently
resolving them, or avoiding them altogether.

Preempting Problems

Before starting a design, engineering teams need to
meticulously consider their desired system, the resources
available, the components being utilized and the course of
development. In doing so, they must anticipate potential
problem areas and make sure to address and prevent
them before they become genuine problems.

Simply put, it is much better to confront problems earlier
in the design and development cycle than later. Detecting
and resolving functional and signal integrity issues as
early as possible can greatly reduce debug time and
development costs.

Two potential problem areas should be thoroughly consid-
ered before embarking upon system design: functional
issues and signal integrity issues.

Functional Issues: Although common, functional problems
can be caught and avoided through an effective and
well-defined development process. For example, paper
design reviews help examine power distribution and clock

distribution to avoid timing errors. Board-level simulations
and static timing analysis tools are also useful for identifying
errors in the early stages of system design.

Signal Integrity Issues: Another common cause of timing
errors is signal integrity issues produced by noise, distortion
and other anomalies. Low-amplitude signals, slow transition
times, glitches, overshoot, crosstalk, signal path design,
impedances, loading, transmission line effects and even
power distribution on the circuit board can impair a signal
in the analog domain, which can then cause timing errors
in the digital domain.

There are many advanced simulation tools that help reduce
errors in the early stages of digital system design. However,
these tools have inherent limitations, notably the simulation
of flip-flop scenarios. For example, simulating the synchro-
nization of signals across clock boundaries may not reveal
problems such as fast path, race condition and hold
violations. Because of these limitations related to simulation
tools, it is advised that engineers create their designs in
preparation for and support of debug and verification.

Designing for Debug and Verification

Much to the dismay of engineers who work tirelessly to
create a flawless system, no design is perfect. Today’s
complex designs involve arduous debug work during the
validation phase of system development. Engineers must
be able to identify problems, trace their root causes and
resolve them – quickly and efficiently. Experienced engi-
neers will utilize the design phase to prepare their systems
for the debug and verification phase, easing the process
of detecting and eliminating problems.

This preparation can be accomplished by developing a test
and validation plan in conjunction with circuit design to
address the potential problems and issues. A robust test
and validation plan helps remove surprises and potential
roadblocks by:

Identifying functionality to be tested and how it will be
tested

Identifying interfaces and signals that need to be verified

Identifying the type of measurements that need to be
made

Fundamentals of Timing Analysis
Primer

11www.tektronix.com

In the design phase, experienced engineers address several
fundamental questions, such as:

What are the potential issues when validating the timing
sequence and specifications?

What tools and banner specifications will be required to
address those potential issues?

How will system activities be correlated and sub-systems
isolated so the debug scope can be narrowed and
problem areas identified?

To answer these questions, engineers will need to begin
by designing their circuits with an effective probing strategy,
ensuring they will have total system visibility during the
debug and validation phases of system development. In
tandem with a successful probing strategy, powerful
instruments can help engineers visualize system activities,
correlate timing relationships among multiple interfaces,
channels and waveform edges and provide accurate
measurement information. With the right probing approach
and high-quality instruments, engineers can identify
problems and debug their circuits much more effectively
(see Figure 8).

Component selection can also play an important role when
developing an effective validation and debug plan. For
example, selecting FPGA chips that support FPGAView can
save time in validation and debugging. FPGA chips are
widely used in many embedded system designs. Engineers
often need to conduct timing analysis on the signal running
inside the FPGA chip and correlate the internal signals with
signal activities outside the chip. Therefore, using FPGA
components that support FPGAView enables the engineer
to conduct real-time debugging on FPGA chips more effi-
ciently. FPGAView allows designers to view the internal
operation of their FPGA and correlate the internal signals
with other board signals. It also lets the engineer change
internal probe points without recompiling their design to
monitor multiple internal signals per debug pin.

Remember, an effective debugging plan starts in the design
phase. A well-prepared debugging plan that is developed
during the design cycle will reduce surprises and obstacles
and expedite timing analysis work.

Finding Problems Efficiently

Although most engineers are very good problem solvers,
they need clues that help them trace and understand
system problems. Without clues, engineers’ debugging
efforts can be directionless and unproductive. This under-
scores the importance of test and measurement tools,
namely oscilloscopes and logic analyzers, which enable
engineers to visualize system activities and find clues
regarding elusive timing errors.

Oscilloscopes are great tools for visualizing analog details,
measuring characteristics such as rise time, fall time
and jitter and examining system power, clocks and key
signals. However, these powerful instruments have limited
channel counts and logic trigger options. When conducting
timing analysis on multiple channels or defining intelligent
logic triggers, the logic analyzer is the preferred instrument.
A logic analyzer is used to examine timing execution
and signal integrity on multiple channels, buses and
microprocessors.

PCI Bus

Custom I/O

Local Bus

µP

PCI
Bridge
Chip

System
Bus

SDRAM

Flash ROM

= Probe PointsP

P

P

P

P

P

PCI-to-
System
Bridge

FPGA PCI
Device 1 Ethernet

Figure 8. A probing strategy to enable total system visibility.

Fundamentals of Timing Analysis
Primer

12 www.tektronix.com

To help confront the complexity of modern digital systems,
recent innovations have boosted the debugging power
of these traditional test and measurement instruments.
The following innovations have proven effective in reducing
the time and difficulty of debugging today’s systems.

The iLink™ Toolset Advantage

Modern designs require the analysis of both analog and
digital waveforms to validate system timing. Engineers must
use logic analyzers to verify signal logic status, bus values,
signal sequencing, setup/hold times and so on. In addition,
they need an oscilloscope to make analog measurements
such as rise time, fall time, jitter and pulse distortion.

To take advantage of the inherent strengths of each instru-
ment, engineers can now integrate a logic analyzer and
oscilloscope with an iLink toolset. This analog and digital
integration solution speeds up debugging and verification
work by wading through the digital information stream to
trigger on circuit faults and capture related events with a
logic analyzer. Concurrently, an oscilloscope can peer
behind the digital timing diagrams to show the raw analog
waveforms and measurements.

The iLink toolset, which includes iCapture™ multiplexing,
iView™ display and iVerify™ analysis, is a comprehensive
package that brings exceptional debugging power to
engineers and speeds up waveform analysis work.

iCapture™ multiplexing provides simultaneous digital
and analog acquisition through a single logic analyzer
probe (see Figure 9). When examining signal trace wave-
forms, engineers can route any four channels among
hundreds to an oscilloscope with a few mouse clicks.
Since the analog outputs are always “live,” engineers
can save tremendous amounts of time and effort by not
having to set up analog probing, channel-by-channel.

iCapture multiplexing also eliminates the double probing
dilemma. Engineers no longer have to place both a logic
analyzer probe and oscilloscope probe on a circuit at the
same time. In some applications, the excessive loading
from two probes can affect signal authenticity and impact
measurement accuracy.

iView™ display delivers time-correlated, integrated logic
analyzer and oscilloscope measurements on the logic
analyzer display (see Figure 10). During digital timing analy-
sis, engineers can use the logic analyzer’s intelligent trigger
and wide channel counts to capture elusive timing errors,
while at the same time using the oscilloscope to view
analog details of target signals. The iView display gives
engineers the capability to cross trigger between the logic
analyzer and oscilloscope and place the digital and analog
waveforms on one screen in time-correlated fashion.
For example, engineers can capture timing glitches from
multiple channels with a logic analyzer. A red flag on the
logic analyzer screen will specify which channel has a
glitch. MagniVuTM high-resolution timing will unveil the glitch
details. And time-correlated analog waveforms from the
oscilloscope will reveal the cause of the timing glitch.

iVerify™ analysis provides multi-channel bus analysis and
validation testing using oscilloscope-generated eye dia-
grams (see Figure 11). With iVerify analysis, engineers can
quickly validate the parameters of a system through the
oscilloscope’s powerful acquisition and analysis capabilities.

Figure 9. iCaptureTM multiplexing simplifies probing.

Oscilloscope - Analog In

2 GHz
Analog Mux

LA
Analog Out

CH1 CH2 CH3 CH4

CH1 CH2 CH3 CH4

34 ch34 ch34 ch34 ch

Fundamentals of Timing Analysis
Primer

13www.tektronix.com

The iVerify analysis capability automatically captures and
displays a high-resolution eye diagram on the logic analyzer
screen. Engineers can view eye diagrams across the entire
bus, enabling them to easily verify their design in relation
to data valid window specifications required by industry

standards such as
RapidIO and PCI Express.
iVerify analysis also helps
identify elusive signal
integrity problems in the
timing domain, such as
crosstalk, skew, over-
shoot, slew rate problems
and inter-symbol interfer-
ence.

The FPGAView™

Software Advantage

FPGAs are increasingly
popular in today’s digital
system designs. To vali-
date system performance,
engineers often need to
use a logic analyzer to
view internal signal activi-
ties and correlate them
with other signals on the
board. To do so, they
must route internal
channels to dedicated
debug pins and view
them with the logic
analyzer.

This approach can be
tedious and timing con-
suming. Pins on FPGA
chips are typically scarce
and debug pins are
therefore very limited. If
engineers wish to view
different signals, they are
forced to make changes

in their RTL or use FPGA edit tools to reroute the desired
set of signals to debug pins over and over again. This
process is not only time consuming, but can also change
system timing if it requires a recompilation of the design,
potentially hiding the problem the engineer is attempting
to resolve.

Figure 10. iViewTM display enables analog and digital waveforms on one screen.

Figure 11. iVerifyTM analysis provides multi-channel eye diagrams for easier bus analysis.

Fundamentals of Timing Analysis
Primer

14 www.tektronix.com

First Silicon Solutions has developed FPGAView software
to operate in conjunction with Tektronix logic analyzers to
eliminate this problem, helping engineers focus on signal
analysis (see Figure 12). By using FPGAView, engineers
no longer need to recompile their design every time they
want to change the signals they are monitoring. Not only
does this save compiling time, it also avoids changing
system timing through different routing and placement.

FPGAView also preserves on-chip resources such as
memory. Timing errors often only appear after a series of
events, necessitating a long record length to capture. With
FPGAView, engineers are able to take advantage of the
logic analyzer’s resources to save limited on-chip resources
and control system complexity. Engineers can also use
the logic analyzer to correlate internal signals with other
signals on the circuit with FPGAView. By using the intelligent
trigger resources and measurement features of a logic
analyzer, timing errors can be captured quickly and easily.
In addition, FPGAView automatically transfers the signal
names from a design to the logic analyzer. This saves a
substantial amount of time in retyping hundreds of channel
names and matching them with the original design. It also
increases the flexibility for monitoring system signals during
timing analysis.

Application Examples
To highlight the concepts covered thus far, the following
application examples provide a guide for debugging a few
common timing problems.

Capturing Setup/Hold Violations

Setup/hold compliance is one of the most crucial timing
parameters in a digital system. The traditional approach
of verifying setup/hold timing using two oscilloscope

channels and probing
the clock and data lines
one-by-one becomes
tedious and time consum-
ing when there are
numerous signal traces

running on the circuit. However, a logic analyzer can scan
entire system buses to trigger on and display setup/hold
violations automatically.

To simplify the process, engineers should create test points
during the design phase that will allow the logic analyzer’s
probe to easily access the clock and target signals.
Engineers should also consider logic analyzers that are able
to clock system signals in timing mode and state mode
simultaneously. State mode enables a logic analyzer to
trigger on setup/hold violations, while a high-resolution
timing mode enables the engineer to measure the violation.
The Tektronix TLA Series logic analyzer is used in the
following example.

Step I

First, the engineer must connect a probe to the target
device and assign the appropriate logic threshold.
The engineer must then go to the Setup Window to
change the clocking mode to “External” (see Figure 13).

Performance logic analyzers have two ways to clock
target signals: internal mode and external mode. In the
internal mode, also called timing mode, the logic analyzer
samples the signals of the device under test (DUT)
periodically by using an internal clock. The user can
adjust the sample rate to change the timing resolution.

Figure 12. Typical FPGAView implementation.

Figure 13. Changing the clocking mode.

Fundamentals of Timing Analysis
Primer

15www.tektronix.com

In the external mode, also called state mode, the logic
analyzer samples acquired signals according to an
external clock, which is typically synchronized with
device signals. In this mode, logic analyzer users can
see waveform states only when they are valid.

To capture setup/hold violations, the engineer must
compare the waveform edge timing relationship between
clock and target signals. Therefore, they need to use
external mode to capture setup/hold violations.

Step II

The next step is to drag
and drop the “Setup and
Hold” trigger option onto
the target buses and
define bus setup and
hold specifications (see
Figures 14 and 15). In this
example, the data bus
has a specification of 1ns
setup time and 500ps
hold time.

Step III

After defining the trigger
condition, the engineer
simply presses the “Run”
button to begin a new
acquisition. The logic
analyzer automatically
examines thousands of
active waveform edges
in accordance with the
clock edge. As soon as
the logic analyzer identi-
fies a setup/hold violation,
it will trigger and place
red flags on the screen
to display the violation
areas (see Figure 16).

Figure 14. Selecting the “Setup and Hold” trigger option.

Figure 15. Specifying setup and hold times.

Figure 16. A red flag indicates a violation.

Fundamentals of Timing Analysis
Primer

16 www.tektronix.com

This process enables the engineer to identify problem areas
quickly. Plus, they can also use the logic analyzer’s auto-
mated measurements to determine how many violations are
in the system’s buses (see Figure 17).

Step IV

Once setup/hold violations have been identified, the next
step is to gather more details and make necessary
measurements. Logic analyzers with high-resolution
MagniVu acquisition are extremely helpful in this regard,
along with the ability to acquire signals in timing mode

and state mode at the
same time from the same
probe acquisition.
MagniVu waveforms can
be used to measure the
delta time between the
clock edge and signal
edges to attain additional
clues about the problem
(see Figure 18). These
clues provide a better
understanding of the viola-
tion’s root causes and aids
in problem resolution.

Using FPGAView to
Validate a FPGA

Although FPGAs offer
flexibility in embedded
system designs, validating
and debugging the design
inside a FPGA chip is
still a challenging and
time-consuming process.
Timing simulation tools
are available for FPGA
debugging, yet they come
with several inherent
limitations. They have
difficulty simulating real-
world circuitry, especially

when dealing with timing issues and interfaces across
different clock domains. To more efficiently validate FPGA
timing, engineers can use FPGAView to route internal
signals out through FPGA pins and visualize them in a
high-performance logic analyzer.

In this example, an Altera FPGA running at 100 MHz is
used while interfacing with a microprocessor controller and
DAC (see Figure 19). The µP interface is asynchronous to
the 100 MHz FPGA clock. The serial D/A interface operates
at an effective clock rate of 1 MHz. There is a register inside
the FPGA that is the value/status register for the D/A. To

Figure 18. MagniVu provides measurements and clues about a violation.

Figure 17. Automated measurements identify the violation counts and rates.

Fundamentals of Timing Analysis
Primer

17www.tektronix.com

drive a different analog voltage, the µP writes a new value
to the D/A value register. This will clear the D/A READY bit
in the status register telling the µP that the D/A control
state machine cannot accept a new value. The FPGA then
generates the appropriate serial data stream to the D/A.
Once it is complete, the READY status bit is set, indicating
the µP can write a new value to the value register.

For this particular example, the system works well with
a few notable exceptions during the validation process.
The value the µP is writing to the D/A value register is not
reflected on the D/A output, and the simulations did not
reveal any violations. To find the root cause of the irregular
problem, the engineer must correlate the signal activities
on the µP interfaces, inside the FPGA and on the D/A
interface. With careful planning during the design phase,
the µP, FPGA and D/A interfaces can easily be captured
by a logic analyzer.

Step I

The engineer must first connect the logic analyzer to the µP
interface and D/A interface. The logic analyzer is then set to
trigger on a write to the D/A value register.

Step II

If no problems are identified when the µP and D/A inter-
faces are captured in this manner, the engineer can modify
the logic analyzer’s trigger. The modification may direct
the instrument to trigger only if a write to the value register
occurs and no serial data stream is generated in an
appropriate amount time after the write. The engineer may
find the logic analyzer triggers and shows that while a

write occurs to the value register, no corresponding serial
data stream is produced. This circumstance may not
have been revealed during the simulation process.

Step III

Once a problem has been identified, the engineer can use
the FPGAView software to more easily analyze the internal
operation of the FPGA. FPGAView provides the ability to
select the D/A control state machine along with the µP and
D/A interfaces, giving complete visibility of the design. The
FPGAView software also programs the logic analyzer with
FPGA internal signal names, assigning channels to make it
easy to interpret measurement results. Correlating these
FPGA signals with other signals in a system is done auto-
matically by the logic analyzer.

By examining all of the data on the logic analyzer, the engi-
neer will see the D/A control machine never starts, even
though the system writes to the value register. When the
new value is written to the value register, the state machine
believes the READY bit is not asserted, indicating it was
not ready for a new value. Because of this circumstance,
the system ignored the write and did not even start the
process of writing a new value to the D/A. At the same
time, the READY bit to the µP was asserted, indicating it
was okay to write a new value.

In this case, two different blocks of the design running
at different frequencies were using the READY bit. Two
different registers running at two different clock rates were
sampling a single output. Since the D/A control machine
runs much slower than the µP interface, the D/A control
machine is not getting updated quickly enough. The
engineer will need to change the system’s RTL code to
eliminate this problem.

This example highlights the timing challenges of today’s
digital designs, where signals are used in more than
one clock domain. With careful planning during the
design phase, engineers can gain the visibility needed
to troubleshoot these potential timing problems. Seeing
all of the key buses and FPGA internal signals enables
engineering teams to effectively correlate system activities,
visualize waveforms and isolate problems using logic
analyzer triggers.

µP D/A
FPGA

Running at
100 MHz66 MHz µP

Interface
Serial D/A
Interface

Figure 19. FPGA example with µP interface and serial D/A interface.

Fundamentals of Timing Analysis
Primer

18 www.tektronix.com

Capturing Timing Errors Caused by
a Glitch

Timing errors caused by glitches are usually characterized
by intermittency and elusiveness. These characteristics
make it difficult and time consuming to capture a glitch
in a system with many channels. An efficient approach
is to combine classic top/down troubleshooting with the
specific advantages of the engineer’s test instruments.
To do so, the engineer must first take a broad, macro
view of device operations and then begin focusing on
particular problem areas.

On the macro (digital) level, the engineer can use a logic
analyzer to perform glitch triggering on buses that contain
hundreds of signals. The logic analyzer checks every
signal for glitches, using red flags on the bus timing
diagrams to highlight glitch locations. The engineer can
then use an oscilloscope to help further characterize the
problem by revealing exactly what the glitch looks like
on a micro (analog) level. Using iView measurements
on the Tektronix TLA Series logic analyzer, engineers

can combine logic analyz-
er and oscilloscope dis-
plays into a single view to
quickly solve the problem.

Step I

On the logic analyzer
application waveform
window, the engineer
can drag and drop a glitch
triggering option on the
target buses. The logic
analyzer’s bus timing
waveform is able to exam-
ine all of the bus signal
lines at once. If the logic
analyzer detects a glitch
on any of the lines, it
will place a red flag on
the bus, the channel and
the time location where
the glitch occurs.

Step II

Once a glitch has been identified, the engineer can expand
the logic analyzer’s bus waveforms to view individual
signals. The red glitch flags can be seen on signal lines
Sys(0) and Sys(1) (see Figure 20).

Step III

To see how the identified glitches relate to other events or
faults, the engineer can use a high-resolution timing view to
examine the faults in finer detail. Tektronix TLA Series logic
analyzers offer high-resolution MagniVu timing acquisitions
that run simultaneously with the instrument’s deep timing.
MagniVu waveforms can display all channels in high-resolu-
tion up to a 16 Kb memory depth. This is the equivalent
of having two logic analyzers in one: a deep timing logic
analyzer and a high-resolution timing logic analyzer, both
using the same probes.

In this example, the engineer can use MagniVu high-resolu-
tion timing to examine the glitch identified in Sys(0) and

Figure 20. Red flags indicate problem areas on examined buses.

Fundamentals of Timing Analysis
Primer

19www.tektronix.com

Sys(1). Since the logic analyzer’s MagniVu waveforms are
examining the signals at a much higher resolution (125 ps
in this example), it is able to discern far narrower glitches
on both lines (see Figure 21). Note that the glitch and a
pulse occur at the same time on both signal lines. This
often indicates crosstalk between the two signals, but the
engineer will need to make a different type of examination
to be sure.

Step IV

The engineer can discov-
er what the glitch really
looks like by comparing
the analog and digital
signal qualities using both
an oscilloscope and
logic analyzer with iView
display capability. The
iView display allows the
logic analyzer to trigger
the oscilloscope at exactly
the right time to capture
the glitch. With iView
measurements, the logic
analyzer also time-corre-
lates the data and displays
of both the analog and
digital waveforms on the
logic analyzer’s display.

In this scenario, every
leading edge of one signal
has a corresponding
positive voltage pulse on
the other (see Figure 22).
This makes crosstalk
between Sys(1) and Sys(0)
the obvious diagnosis.
Crosstalk can easily occur
on adjacent runs or pins
within the system. High-
frequency signals and
clock edges have a
greater susceptibility to
crosstalk effects than

lower frequency signals. This implies that consistently
successful design practices at slower frequencies can be
a contributor to failures at higher frequencies.

Logic analyzer glitch triggering can be used on buses
with hundreds of signals. The instrument checks every
signal line for glitches. If it flags a glitch, the engineer
should start focusing on the problem to determine its
source. This combination of cutting edge logic analyzers
and oscilloscopes offers engineers a powerful tool for
confronting timing errors caused by signal integrity
problems.

Figure 21. MagniVu acquisition unveils glitch details by using high-resolution timing waveforms.

Figure 22. iView display correlates digital and analog domains.

For Further Information
Tektronix maintains a comprehensive, constantly expanding
collection of application notes, technical briefs and other
resources to help engineers working on the cutting edge of
technology. Please visit www.tektronix.com

Copyright © 2006, Tektronix. All rights reserved. Tektronix products are covered by
U.S. and foreign patents, issued and pending. Information in this publication super-
sedes that in all previously published material. Specification and price change
privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix,
Inc. All other trade names referenced are the service marks, trademarks or regis-
tered trademarks of their respective companies.
04/06 DM/ xxx 52W-19572-0

Contact Tektronix:
ASEAN / Australasia (65) 6356 3900

Austria +41 52 675 3777

Balkan, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium 07 81 60166

Brazil & South America 55 (11) 3741-8360

Canada 1 (800) 661-5625

Central East Europe, Ukraine and the Baltics +41 52 675 3777

Central Europe & Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France & North Africa +33 (0) 1 69 86 81 81

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-22275577

Italy +39 (02) 25086 1

Japan 81 (3) 6714-3010

Luxembourg +44 (0) 1344 392400

Mexico, Central America & Caribbean 52 (55) 56666-333

Middle East, Asia and North Africa +41 52 675 3777

The Netherlands 090 02 021797

Norway 800 16098

People’s Republic of China 86 (10) 6235 1230

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea 82 (2) 528-5299

Russia & CIS +7 (495) 7484900

South Africa +27 11 254 8360

Spain (+34) 901 988 054

Sweden 020 08 80371

Switzerland +41 52 675 3777

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Updated 28 February 2006

Summary
High-speed buses, the popularity of FPGAs and the
complexity of modern systems have rendered the process
of timing analysis – a fundamental aspect of digital
system validation and debugging – more complicated
and time consuming than ever before. Today’s systems
are far more sensitive and vulnerable to timing errors,
which are often elusive and hard to identify and resolve.

Fortunately, there are several tips and tools for efficiently
resolving timing errors, or avoiding them altogether. By
considering possible problem areas during the design
phase, developing a thorough test and validation plan
and employing an integrated oscilloscope and logic
analyzer for a comprehensive view of system activities,
engineers can effectively reduce the time and difficulty
of timing analysis and system debugging.

