
Today’s digital systems—from the video game console
in the media room to the complex switching elements
in a communication network—rely heavily on serial bus
technology to do their job. Not surprisingly, a host of
application-specific serial buses has emerged. Serial
ATA handles communication between chipsets and
disk drives. HDMI manages data going from digital
A/V sources to display devices. PCI Express (PCIe),
designed to connect peripheral devices in the PC
environment, now finds itself in a wide range of
applications not served by other specialized interfaces.
In a given electronic system, it is not unusual to find all
of these buses coexisting, and potentially several
parallel buses as well.

This trend has intensified the demand for cross-bus
troubleshooting solutions that offer a simple integrated
way to view logical activity on several different buses
at once. A variety of solutions exists. The traditional

approach is to pair a standard-specific protocol
analyzer with a logic analyzer (LA); the former takes
care of the serial acquisition while the LA captures
parallel bus data that may pertain to the troubleshooting
issue at hand. Another approach is to use an LA with
a bus support package that includes an external
interface to convert serial data into the parallel data
used by the logic analyzer.

Now a third methodology has arrived. Tektronix
TLA7000 Series logic analyzers can be equipped
with integrated PCI Express serial acquisition modules
that plug directly into the LA mainframe just like their
parallel counterparts. Users can mix serial and parallel
acquisition modules within a single system. With the
addition of this serial capability, the TLA7000 family
can capture and display time-correlated parallel and
serial data as well as analog waveforms from an
oscilloscope, all on the same LA screen.

Cross-Bus Analysis Reveals Interactions and
Speeds Troubleshooting

Application Note

Cross-Bus Analysis Reveals Interactions and Speeds Troubleshooting
Application Note

It is a capability that is destined to simplify digital
troubleshooting. Using a combination of PCI Express
serial and parallel modules, cross-bus analysis can be
performed by one logic analyzer system.

Digital Solutions Often Begin With
Analog Troubleshooting

The underlying architecture of a PCI Express serial link
is well established. Often embedded as an element
within an FPGA, a PCI Express transmitter with a
SERDES (serializer-deserializer) at its heart sends
8b/10b encoded information to a receiver elsewhere
in the system. Transmission impedances, bit rates,
and clock characteristics are explicitly specified and
controlled for interoperable operation between diverse
manufacturers’ PCI Express components.

Though this link is a digital system, errors therein may
have either digital or analog origins. Frequently the first
step in troubleshooting is to take a “snapshot” of the
analog waveforms at the time of the error.

Some logic analyzers include features that enable them
to integrate analog acquisitions (waveforms) from a
connected oscilloscope into the digital LA display. The
analog traces are of course time-correlated with their
digital counterparts. This makes it possible to observe
analog events such as glitches and runt pulses concurrently
with the digital events that may be their cause or
consequence. A logic analyzer equipped with parallel

modules and serial modules and this analog display
capability is an unmatched cross-bus analysis platform.

Figure 1 shows an acquisition taken from a PCI Express
serial link. The cursor location marks the cycle in
which the link goes to an incorrect packet value. The
mnemonics of that state are explained in more detail in
the next section of this document. All that matters right
now is that there is an error, its occurrence has caused
the LA to trigger, and that event has in turn triggered an
acquisition by a real-time oscilloscope monitoring the
link. The image in Figure 1 was captured by a Tektronix
TLA7000 Series logic analyzer equipped with an
integrated PCI Express serial module as well as iView
(Integrated View) tools, which deliver oscilloscope
waveforms to the LA display. The oscilloscope used in
this example is a Tektronix TDS6154C real-time
instrument. Other models in the Tektronix DPO7000
Series, DPO70000 Series, and the DSA70000 Series
also offer the iView capability.

The analog waveform depicts the exact same data as
the serial busform display above it. The two views are
time-correlated (synchronized). Theoretically it is
possible to hand-decode the actual binary waveform
data to confirm this. Looking at the analog waveform in
the vicinity of the cursor, it is apparent that the error is
not caused by analog-domain problems such as runt
pulses or glitches. The pulses in the error packet are
consistent in amplitude, duration, and aberrations with
those that precede and follow them. Thanks to the

2 www.tektronix.com/logic_analyzers

Figure 1. Cross-bus analysis often begins with a dual-trace LA display showing the analog waveform plotted
against a serial or parallel bus data acquisition. Captured with an oscilloscope and ported to the TLA7000
Series logic analyzer using the iView function, this screen shows that the analog behavior of the serial signal is
not causing the errors in the serial signal. The analog waveform is within normal tolerances.

Cross-Bus Analysis Reveals Interactions and Speeds Troubleshooting
Application Note

accurate time correlation of the two views, one can
conclude that the packet error does not stem from an
underlying analog problem. If there had been such a
problem, the next troubleshooting steps would rely on
an oscilloscope triggered by the logic analyzer to track
down the root cause. But the findings in Figure 1 strongly
imply a digitally-based issue deriving from a timing
problem or other digital conflicts. The logic analyzer is of
course the tool of choice to complete the job.

Debug Port’s Parallel Data Offers a Different
View of Serial Link Activity

PCI Express transmitter/receiver pairs, common in
consumer electronic products, telecommunication
systems, and many other applications, often include not
only a serial link, but also a built-in “debug port.” This
parallel output delivers real-time data summarizing the
transactions occurring within the device. With debug

ports on both the transmitter and the receiver,
developers can monitor the health of the transmission
link and localize many types of problems to either the
transmit or the receive side.

Figure 2 represents a state machine that might be found
within a PCI Express serial receiver. The simplified
interactions shown here symbolize a routine link
procedure, with the black arrows indicating legal
state transitions.

Figure 3 is a block diagram showing a test setup for the
PCI Express serial link and its transmitter and receiver
state machines. Assume that this is a troubleshooting
routine designed to locate the origin of garbled data
appearing on the serial link. The debug ports are of
course connected to a parallel acquisition module,
while the PCI Express link connects to a serial module.

3www.tektronix.com/logic_analyzers

Figure 2. The Debug Port state machine of the PCI Express receiver.

Figure 3. The logic analyzer acquires parallel data from the debug ports simultaneously with serial data from
the PCI Express link. Acquisition modules marked with a “P” are parallel while the unit marked with an “S” is a
dedicated PCI Express serial module. All data traces are time-correlated when an integrated logic analyzer
is used.

Cross-Bus Analysis Reveals Interactions and Speeds Troubleshooting
Application Note

Figure 4 is a screen image from the logic analyzer
acquisition. This view adds the parallel data stream
captured from the receiver’s Debug Port. The new logic
analyzer busform trace includes the hexadecimal values
shown in the state machine diagram (bottom waveform).

Look closely at both busform envelopes at the point
where the red cursor line crosses them. Here the link
enters the Overflow (001) state. Something has gone
wrong. The routine has jumped directly from Idle to
Overflow, which is impossible if the state machine is
circulating properly through its instructions. The gray
arrow in Figure 2 indicates this “error” step.

All three traces in Figure 4 are time-correlated thanks
to the tightly integrated serial and parallel acquisition
modules operating within the same logic analyzer
mainframe. In some cases the serial bus transition
may lag behind the Debug Port output due to latency,
that is, the time required for the serial buffer to flush its
contents after the state has changed. In such instances
the timing differential visible in the cross-bus view will
reflect this latency accurately.

In Figure 4 the traffic on the serial bus is so dense that
individual cycles cannot be displayed at the current
resolution. But it is clear that the yellow portion of the
serial trace coincides with the 001 state on the State
Machine trace. The blue portion of the serial trace’s
timing matches up correctly with the E81 Idle state on the

debug port. The link is operational and communicating
but it is not following its intended routine.

Because the serial data errors coincide with the
Overflow state on the debug port, and because the
serial data is driven by the SERDES it is reasonable to
assume that the problem is timing-related and originates
within the SERDES. At this point there may be several
potential troubleshooting strategies, influenced by
architectural considerations or other debug findings.

Most commonly, serial link features of the kind
discussed here are incorporated into an FPGA. This
type of device is designed to transform itself into
functional elements defined by the programmer. This
“transformation” process is known as synthesis, since
it literally synthesizes the desired functions using its
internal gates. Knowing this, the astute designer will
troubleshoot the error first by double-checking the
FPGA synthesis results to make sure the timing of all
state machine transitions is correctly implemented.

If that doesn’t reveal the problem’s source, a second
pragmatic step is to route other signals to the debug
connector to trace the device’s behavior. For example,
after evaluating the Current State data as shown in
Figure 4 the FPGA might be reprogrammed to deliver
the “Next State” data to the debug port. This could
reveal issues that are not seen in the Current State,
and of course there are even more states that can be
investigated beyond that.

4 www.tektronix.com/logic_analyzers

Figure 4. The serial errors (the yellow portion of the serial busform trace) coincide with an incorrect state
change in the Debug Port state machine. This implies a timing problem within the SERDES, which may stem
from errors in the FPGA synthesis process.

Cross-Bus Analysis Reveals Interactions and Speeds Troubleshooting
Application Note

Monitoring Three Buses At Once To Track
Down Errors

The PC motherboard is an example of today’s cross-bus
troubleshooting environments. It is a complex,
sophisticated piece of electronic design; diverse
high-speed serial buses transport signals among IC
components, between on-board subsystems, and out to
peripherals and storage media. A problem on any one of
these buses can manifest itself as an error on an entirely
different bus.

In the simplest terms, the logic analyzer must trigger
on an error occurring on one bus while viewing the
error’s origins in a different subsystem or bus and its
consequences on a third. During the development of a
motherboard, interactions and dependencies among
buses that are not electrically connected can reveal
much about the stability of the emerging product.

Consider the following example: a prototype for a
motherboard has arrived after fabrication. During the
design validation process, it frequently encounters
problems in its routine functional exercises. In the worst
case, the device freezes and must be re-booted. At
other times the device seems to operate normally but
the display is garbled and unintelligible. A block diagram
of this motherboard, connected to the logic analyzer for
simultaneous serial and parallel acquisition, is shown in

Figure 5. The “interposers” are simply probing
attachments that plug into existing board-mounted
connectors to extract the desired signals.

A test is created that incorporates a series of READ and
WRITE operations, among others. The test proceeds:

– First the CPU issues a WRITE command and sends
data 13FF (hexadecimal, as are all values in this
discussion) to a particular address location
(00100000) in the DDR3 SDRAM memory.

In Figure 5, the instruction passes from the CPU
through the processor bus to the chipset, and ultimately
to the DDR3 SDRAM.

– Next the graphics card issues a READ instruction to
the same address. The command goes over the
PCI Express bus, through the chipset, and to the
DDR3 SDRAM.

– Lastly the CPU issues a second WRITE command and
sends new data to the same location in the DDR3 SDRAM.

Since no other instruction should have modified the data
before the graphics card READ, the result of the query
should be 13FF—exactly the same data that was written
during the first cycle.

But the result is 13EF. The PCI Express graphics card
reports an error. What could be causing this problem?

5www.tektronix.com/logic_analyzers

S P P PPP

Processor

DDR II

DDR II
Chipset

DDR3

DDR3
P

C
Ie

In
te

rp
os

er

PCI Express
Graphics

Card

Processor Bus
Interposer

Logic Analyzer

DDR3
Interposer

Figure 5. Simultaneous acquisition of serial and parallel bus data speeds the search for a memory Write error.
As in Figure 3, “P” modules are parallel, while the “S” denotes a PCI Express serial module.

Cross-Bus Analysis Reveals Interactions and Speeds Troubleshooting
Application Note

Concurrent monitoring of all three of the buses involved
in the transaction proves to be a fast and easy way to
track down the problem. In Figure 5, the PCI Express,
DDR3 SDRAM and processor bus interposers connect
to serial and parallel acquisition modules, respectively.

Looking at the transactions from the PCI Express bus (in
their deserialized form, as delivered by the PCI Express
acquisition module and shown in Figure 6), it becomes
clear that the PCI Express graphics card is indeed
receiving the incorrect 13EF data word. It is appropriately
reporting flawed data. Neither the graphics card nor the
PCI Express bus is the source of the problem.

The next step is to look at transactions on the DDR3
SDRAM bus which, because they produce a display

very similar to Figure 6, need not be repeated here.
A READ operation confirms that the correct address
was written.

That brings the processor into question. Did it send
the data it was supposed to send? Monitoring the
processor bus establishes that the correct data was
written to memory.

All three buses appear to be doing their jobs correctly.
The data is being issued correctly and sent to the
desired memory location as commanded by the CPU.
The only remaining possibility is a timing conflict of
some kind. One potential suspect is the READ/WRITE
timing. Yet the previous steps have established that
the CPU is issuing the WRITE at the expected time.

6 www.tektronix.com/logic_analyzers

Figure 6. The logic analyzer display shows both the Read cycle and the response from the DUT.

Cross-Bus Analysis Reveals Interactions and Speeds Troubleshooting
Application Note

When timing and synchronization problems are
suspected, the logic analyzer’s ability to view correlated
traces from all three buses is a time-saver. Looking at
the memory bus reveals that the READ is preceded
by—rather than followed by—the second WRITE cycle,
as shown in Figure 7. The PCI Express card receives
data stored one operation later than intended. The
circled numerals on this timing acquisition correspond
to the following steps:

1. Row Open

2 and 3. First Writes

4 and 5. Second Writes

6. Read (should have occurred
between steps 3 and 4)

The time-correlated view of the READ, WRITE, and data
values on the respective buses reveals a classic
problem: the chipset, which is designed to act as a
“traffic director,” is not timing the graphics card’s READ

request correctly. The READ fails to access the memory
after the first CPU WRITE cycle as intended. The
chipset is source of this problem.

Conclusion

Frequently, tracing a system problem involves much
more than just following a glitch back to its source in
some logic element. An error on one bus may have
its origins—and its impacts—on multiple buses in
the system. For this reason, complete cross-bus
analysis has become an indispensable troubleshooting
methodology. With the advent of integrated tools that
bring time-correlated serial, parallel, and even analog
events into view on a logic analyzer screen, designers
have a powerful new tool in their troubleshooting
work. Cross-bus analysis makes it possible to see
simultaneous interactions throughout the system,
speeding efforts to track down not just errors, but
also their root causes.

7www.tektronix.com/logic_analyzers

Figure 7. The DDR3 SDRAM bus. After CS0-1 opens the row, a sequence of WRITE operations occurs,
commencing after the cursor. CS0-2 and CS0-3 are the first WRITEs to the memory in this sequence. The
paired pulses write to consecutive addresses. CS0-4 and CS0-5 are another pair of WRITEs. CS0-6, the final
command to this address location, is a READ that should be occurring before the CS0-4 and CS0-5 pair.

Our most up-to-date product information is available at: www.tektronix.com

Copyright © 2007, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign
patents, issued and pending. Information in this publication supersedes that in all previously
published material. Specification and price change privileges reserved. TEKTRONIX and TEK are
registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks,
trademarks or registered trademarks of their respective companies.

9/07 FLG/WOW 52W-21073-0

Contact Tektronix:
ASEAN / Australasia (65) 6356 3900

Austria +41 52 675 3777

Balkan, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium 07 81 60166

Brazil & South America (11) 40669400

Canada 1 (800) 661-5625

Central East Europe, Ukraine and the Baltics +41 52 675 3777

Central Europe & Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France +33 (0) 1 69 86 81 81

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-22275577

Italy +39 (02) 25086 1

Japan 81 (3) 6714-3010

Luxembourg +44 (0) 1344 392400

Mexico, Central America & Caribbean 52 (55) 5424700

Middle East, Asia and North Africa +41 52 675 3777

The Netherlands 090 02 021797

Norway 800 16098

People’s Republic of China 86 (10) 6235 1230

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea 82 (2) 6917-5000

Russia & CIS +7 (495) 7484900

South Africa +27 11 206 8360

Spain (+34) 901 988 054

Sweden 020 08 80371

Switzerland +41 52 675 3777

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Updated 1 June 2007

